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Abstract 

We present a tensegrity approach to the optimal design of strengthening 
techniques of masonry vaults and domes performed by application of grids 
of fiber reinforced composite materials to the masonry substrate. A topol- 
ogy optimization approach to the masonry reinforcement is formulated, on 
accounting for a minimal mass design strategy, different strengths in tension 
and compression of the material, and multiple loading conditions. We show 
that the proposed optimization strategy can be profitably employed to ratio- 
nally design fiber-reinforced composite material reinforcements of existing    or 
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new masonry vaults and domes, making use of the safe theorem of limit anal- 
ysis. A wide collection of numerical examples dealing with real-life masonry 
domes and vaults highlight the technical potential of the proposed approach, 
and the corresponding optimal design of grids of composite material rein- 
forcements. 
Keywords: Masonry, Tensegrity, Topology Optimization, Minimal  Mass, 
Vaults, Domes 

 
 

 

1. Introduction 

The field of Discrete Element Modeling (DEM) of materials and struc- 
tures is growing rapidly, attracting increasing attention from physicists and 
mechanicians working in different research areas. Originally, such a com- 
putational technique was aimed at describing particle interactions in dis- 
crete systems, via force and/or torque systems (fully discrete systems, re- 
fer, e.g., to [1] and references therein). Nowadays, DEMs are also frequently 
used in association with continuous approximation schemes (coupled discrete- 
continuum models), in order to tackle scaling limitations of purely discrete 
models. DEMs may indeed require a large number of variables, being well 
suited to describe small process zones (dislocation and fracture nucleation, 
nanoindentation, atomic rearrangements, etc., cf. [2–7]). 

In structural mechanics, a special class of DEMs is that of equivalent truss 
models of solids and structures, which includes Lumped Strain/Stress Mod- 
els (LSM) of plates and shells [8–10]; Thrust Network Approaches (TNA) to 
masonry structures [11–16]; mechanical models of chains of granular materi- 
als or carbon nanotube (CNT) arrays [17, 18]; and strut and tie models of 
discontinuous regions in reinforced-concrete structures [19], just to name a 
few examples. Some convergence studies of such methods in the continuum 
limit are presented in [20–22] for bending plates, 2D elasticity,  and  CNT 
arrays,   respectively. 

Tensegrity structures are prestressable truss structures, which are ob- 
tained by connecting compressive members (bars or struts) through the use 
of pre-stretched tensile elements (cables or strings). Motivated by nature 
[23], engineers have only recently developed efficient analytical methods for 
exploiting tensegrity concepts in engineering design [24–26]. Form-finding 
of truss-like structures continues to be an active research area, due to both 
their easy control (geometry, size, topology and prestress control), and   the 
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fact that tensegrity structures provide minimum mass systems under different 
loading conditions [27–32]. 

The present work deals with the topology optimization of  reinforcements 
of masonry vaults and domes realized through meshes of Fiber Reinforced 
Polymers (FRP) or Fabric Reinforced Cementitious Matrix (FRCM) compos- 
ites bonded to the masonry substrate. We model such structures as tensegrity 
networks of masonry struts and tensile elements corresponding to the FRP- 
/FRCM-reinforced regions of masonry. Such reinforcements are typically ap- 
plied to masonry structures in the form of meshes of 1D elements [33, 34], and 
are aimed at carrying tensile forces that would otherwise cause cracking dam- 
age of masonry [35–39]. The proposed optimization strategy determines the 
minimal mass tensegrity structure connecting a given node set, under differ- 
ent yielding constraints on compressive (masonry) and tensile (FRP/FRCM) 
elements. Each node is potentially connected to all the neighbor nodes ly- 
ing in a ball of prescribed radius, through compressive and tensile elements. 
Such a connection pattern defines a  background  structure  that  is subject 
to minimal mass optimization [30], assuming different limit strengths for the 
masonry struts (compressive elements), and the FRP/FRCM reinforcements. 
An optimization procedure takes the node set defining the geometry of the 
structure (obtained, e.g., through a laser-scanner), the material density and 
the compressive and tensile material strengths as input parameters. It pro- 
duces a minimal mass resisting mechanism of the reinforced structure as 
output, which can be regarded as a lumped stress/thrust network model of 
the examined structure [12, 14, 15]. Under the assumption of stable plas- 
tic response of masonry in compression and reinforcements in tension, the 
safe theorem of the limit analysis of elastic-plastic bodies [40] ensures that 
the reinforced structure is safe under the examined loading conditions. It is 
worth noting that the Italian Guide for the Design and Construction of Ex- 
ternally Bonded FRP Systems for Strengthening Existing Structures claims what 
follows: ‘Simplified schemes can also be used to describe the behav- ior of 
the structure. For example, provided that tensile stresses are directly taken 
by the FRP system, the stress level may be determined by adopting a 
simplified distribution of stresses that satisfies the equilibrium conditions but 
not necessarily the strain compatibility’ (see [39], Sect. 5.2.1). A minimal 
mass resisting mechanism allows for an optimized design of FRP-/FRCM- 
reinforcements, preventing excessive over-strength of the reinforced structure, 
which may be responsible for reduced ‘cracking-adaptation’ capacity of the 
reinforced structure under the given loads [41]. 
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The paper is structured as follow. Section 2 describes the proposed 
tensegrity model of a reinforced masonry vault or dome, which is based on 
an automatically generated background structure. Next, Sect.  3  formulates 
a minimum mass optimization of such a structure, under given yielding con- 
straints and multiple loading conditions.  The following Section 4  presents 
a parade of case studies dealing with the FRP-/FRCM- reinforcement of a 
dome (Sect.4.1), a groin vault (or cross vault), a cloister vault (or domical 
vault) and a barrel vault (Sect. 4.2). Concluding remarks and prospective 
work are illustrated in Section 5. 

 
2. Tensegrity model of a reinforced masonry vault 

Let us consider a masonry vault or dome with mean surface described 
by a set of nn  nodes in the 3D Euclidean space.  In a given Cartesian frame 
{O, x, y, z}, the components (xk, yk, zk ) of the position vectors nk of all such 
nodes (k = 1, ..., nn) can be arranged into the following 3 × nn node matrix 

 

(1) 

 
 

We now introduce a background structure, which is obtained by connecting 
each node nk with all the neighbors nj such that it results |nk − nj| ≤ 
rk (interacting neighbors). Here, |nk − nj| is the Euclidean distance 
between nk and nj , and rk is a given connection radius. Fig. 1 shows the 
particular case in which the interacting neighbors of the generic node 
coincide with the nearest neighbors. We connect nk to each interacting 
neighbor nj through two elements working in parallel: a compressive 
masonry strut (or bar ) bi = nk − nj , and a tensile FRP/FRCM element (or 
string ) si = nk − nj . We shall see in Sect. 3 that the minimal mass 
optimization of the background structure chooses which of such members 
(bar or string) is actually present between nodes nk and nj in the optimized 
configuration  (i.e.,  which  one of the above members actually carries a 
nonzero axial force in the minimal mass configuration, see also [30], Sect. 
7). For future use, we let nb and ns denote the total number of bars and the 
total number of strings composing the background structure, respectively 
(with nb = ns in the non-optimal configuration), and we set nx = nb + ns. 
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Figure 1: Background structure associated with a node set extracted from a dome (left) 
and nearest neighbors of a selected node (right). 

 
 
 

We assume that the background structure is subjected to a number m 
of different loading conditions, and, with reference to the j-th condition, we 
let λ(j)

 
i 

denote the compressive force per unit length (force density) acting 
in the i-th bar, and let γ(j) denote the tensile force per unit length acting in 
the i-th string, both defined to be positive quantities. The static equilibrium 
equations of the nodes in correspondence of the current load condition can 
be written as  follows 

 
Ax(j) = w(j) (2) 

where A is the 3nn × nx static matrix of the structure, depending on the 
geometry and the connectivity of bars and strings (see [30]); w(j) is exter- 
nal load vector, which stacks the 3nn Cartesian components of the external 
forces acting on all nodes in the current loading condition; and x(j) is the 
vector with nx entries that collects the force densities in bars and strings in 
correspondence of the same loading condition, that is 

 

x(j)  = [λ(j)  · · · λ(j)  | γ(j)  · · · γ(j)]T (3) 
1 nb 1 ns  

(4) 
 

Let σbi  and σsi  respectively denote the compressive strength of the generic 
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bar and the tensile strength of the generic string of the background struc- 
ture, which we hereafter assume behaving as elastic-perfectly-plastic mem- 
bers. Yielding constraints in bars and strings require that, for each loading 
condition, it results 

 
(5) 

The masses of the generic bar and string of the background structure are computed as 
follows 
 
 

mbi   = Qbi Abi bi, msi   = Qsi Asi si, (6) 

where Qbi   and Qsi   denote the mass densities of such members. 

3. Minimal Mass Design 

Following [30], we formulate a minimal mass design of the background 
structure through the following linear    program 

 
 
 
 
 
 
 
 

where 

 
minimize 
x(j),y 

 
subject to 

m = dT y 
 

Ax(j) = w(j)  
Cx(j) ≤ Dy 

 x(j) ≥ 0, y ≥ 0 

 
 
 
 
, (7) 

 

y = [Ab1   · · · Abnb   
| As1   · · · Asns  ] (8) 

dT = [Qb bi · · · Qb bnb | Qsi si   · · · Qsns sns ] (9) 

C = 
I 

diag(b1, · · · , bnb ) 0 
0 diag(s1, · · · , sns ) I 

diag(σb1 , · · · , σbn ) 0 

l 
(10) 

l 
(11) 

D = 0 
b 

diag(σs1 , · · · , σsns ) 
 

Problem (7) returns an optimal configuration of the background structure, 
which consists of the set of all members (bars and strings) exhibiting    nonzero 

T 
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force density (λ(j) or γ(j)) in at least one of the examined loading conditions. 
i i 

Such a configuration exhibits minimal mass among all the possible config- 
urations of the background structure, under the equilibrium constraints (2) 
and the yielding constrains (5). It is worth noting that the mass of the back- 
ground structure should not be confused with the self-weight of the masonry 
dome or vault under examination, which we agree to include in the external 
load vector w(j) of the loading conditions accounting for gravity effects. The 
quantity subject to minimization in problem (7) should instead be  regarded 
as the mass of an internal resisting mechanism of the structure. As we al- 
ready observed, the latter is formed by a collection of masonry struts (bars), 
and a network of FRP/FRCM reinforcements loaded in tension (strings), which 
are able to carry axial forces that equilibrate the examined external loads 
without  violations  of  the  local  yielding constraints. 

 
4. Numerical Results 

This section presents a parade of applicative examples of the optimization 
procedure formulated in Sect. 3, which deal with the FRP/FRCM reinforce- 
ment of a masonry dome (Sect. 4.1), and three different typologies of masonry 
vaults: a groin vault (or cross vault), a cloister vault (or domical vault) and a 
barrel vault (Sect. 4.2). Let {O, x, y, z} be a Cartesian frame with the z-axis 
oriented upward along the vertical direction. In all the examined examples, 
we consider the combined action of a vertical loading condition, correspond- 
ing to the action of the masonry self-weight, and four loading conditions 
combining the masonry self-weight with horizontal forces acting along   the 
+x, −x, +y, and −y directions, which are equal in magnitude to 35% of  the 
vertical forces. The above horizontal forces mimic the effects of seismic exci- 
tations in two perpendicular directions of the examined structures, through a 
conventional, static approach to seismic actions on constructions (refer, e.g., 
to the European Standard [42]. We name seismic loadings the conditions 
that combine the masonry self weight with the above horizontal forces.  We 
examine ‘Neapolitan’ tufe brick masonry, which is largely diffused in the area 
of Naples, with 15.0 kN/m3 self-weight, and 13 MPa compressive strength 
σb (in all the bar elements). We assume a tensile strength σs equal to 376.13 
MPa in all the string elements, which corresponds to an average value of the 
bond strengths of the FRP and FRCM reinforcements of masonry structures 
analyzed in [33, 34], respectively (we employed formula (5.6) of [39] to esti- 
mate  such  a  strength).   The  examined  background  structures  connect each 
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node to the nearest neighbors (Fig. 1) and are restrained by fixed hinge sup- 
ports at the basis. We used the software Tensopt [43] to numerically solve 
problem (7). 

 
4.1. The Dome of the church of Santa Maria di Monteverginella in Naples 

We study the dome of the church of Santa Maria di Monteverginella in 
Naples, whose FRP-/FRCM-reinforcement has already been studied in [44] 
through a different, finite-element approach (refer to Fig. 2 for geometric 
details). We model the middle surface of the dome through a mesh with 145 
nodes and 1504 connections (background structure in Fig 1). The optimal 
FRP/FRCM reinforcement patterns obtained through the procedure in Sect. 
3 are shown in Figs. 3a-i. 

Under vertical loading, the results in Figs. 3a-c highlight that the min- 
imal mass FRP/FRCM reinforcements of the current structure are polar- 
symmetric and placed along parallel circles above the drum, with width 
increasing downward. Seismic loading in the x direction instead combines 
parallel-circles’ reinforcements with diagonal reinforcements placed over the 
portions of the dome parallel to the x − z plane (±y edges, cf. Figs.  3d-f). 
In this case, the widths of the hoop reinforcements placed over the +x edge 
of the dome are considerably larger than the widths of the reinforcements 
placed over the −x edge. 

 

 

Figure 2: Cross-section of the dome of the church of Santa Maria di Monteverginella in 
Naples. 
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Figure 3: Top, side and 3D views of the optimal reinforcement patterns of a masonry 
dome with FRP/FRCM strips of thickness 0.34 mm (marked in red), under different 
loading conditions. (a)-(c): Vertical loading. (d)-(f): Seismic loading in the +x-direction. 
(g)-(i): Combined vertical loading and seismic loading in two perpendicular directions. 

 
The ‘combo’ loading condition combining vertical loading and seismic 

loading in two perpendicular directions returns polar-symmetric, parallel re- 
inforcements with width increasing downward (Figs. 3g-i). It is worth noting 
that the FRP/FRCM reinforcements corresponding to seismic loading have 
markedly larger widths than those corresponding to vertical loading (com- 
pare Figs. 3a-c with Figs. 3g-i). The width of the top hoop reinforcements 
under vertical loading is about 100 mm (cf. Fig. 3a-c), while that of the 
central hoop reinforcements under combo seismic loading is 578 mm (cf. Fig. 



10  

 
 
 
 

3g-i). The compressed members of the internal resisting mechanism of the 
dome are mainly composed of meridian-shaped struts (Figs. 3a-c),  which 
are associated with diagonal struts in presence of seismic loading (Figs. 3d- 
i). The results in Fig. 3 are in agreement with the frequent observations of 
‘meridional’ (or ‘orange-slice’) crack patterns in unreinforced masonry domes 
(refer, e.g, to [41, 44] and references therein). 

 
4.2. Groin, cloister and barrel vaults 

Figs. 4, 5 and 6 show the minimal mass FRP/FRCM  reinforcements 
that we obtained for a groin vault, a cloister vault and a barrel vault, re- 
spectively. The geometries of the examined vaults are illustrated in above 
figures, together with the corresponding background structures. 

The background structure of the examined groin vault features 237 nodes 
and 1840 connections (cf. Figs. 4a-c). The minimal mass reinforcement 
pattern of such a vault consists of FRP/FRCM strips with thickness 0.17 
mm on the web panels (width of the meridian strips near the crown under 
vertical loading: 340 mm; total width of the square reinforcing patch covering 
the crown under combo seismic loading: 3000 mm), and 200 mm × 3.24 mm 
FRCM strips by the side of the groins at the corners (Fig. 4). The latter 
can also be replaced with pultruded FRP profiles with circular cross-section, 
11.18 mm radius and 620.5 MPa tensile strength [45]. We observe that the 
above reinforcements prevent ‘hinging’ cracks departing from the crown and 
meridian cracks, in the case of vertical loading (Figs. 4d-f); and combined 
meridian cracks, cracks parallel to the groins, and the so-called  ‘Sabouret’ 
cracks parallel to wall ribs, under vertical and seismic loading (Figs. 4g-l). 
The masonry strut network of the groin vault consist of four main arches 
at the intersection of the webs (ribs), which are completed by secondary 
meridian arches and diagonal struts over  the    webs. 
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Figure 4: Top, side and 3D views of the optimal reinforcement patterns of a groin vault 
with FRP/FRCM strips of thickness 0.17 mm on the web panels, and 200 mm × 3.24 mm 
FRCM strips or 11.18 mm radius pultruded FRP profiles at the corners (reinforcements 
marked in red). (a)-(c): Background structure. (d)-(f): Vertical loading. (g)-(i): Seismic 
loading in the +x-direction. (j)-(l): Combined vertical loading and seismic loading in two 
perpendicular directions. 

 
For the cloister vault we employed a background structure with 441 nodes 

and 4508 connections (see Figs. 5a-c). The optimal reinforcement of such a 
vault under vertical loading is mainly formed by parallel FRP/FRCM strips 
with 0.17 mm thickness and 82 mm maximum width near the crown (Figs. 
5d-f). The above reinforcements are integrated with diagonal FRP/FRCM 
strips with about 140 mm maximum width near the intersections of the four 
vault segments, under combined vertical  and  seismic  loading  (Figs.  5g-l). 
The compressed network include couples of diagonal arches near the corners, 
parallel-line arches,  and  diagonal struts  over  the  vault  segments  (Figs. 5d-l). 
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Figure 5: Top, side and 3D views of the optimal reinforcement patterns of a cloister vault 
with FRP/FRCM strips of thickness 0.17 mm (marked in red), under different loading 
conditions. The widths of the FRP/FRCM reinforcements are magnified by a factor 2 for 
visual clarity. (a)-(c): Background structure. (d)-(f): Vertical loading. (g)-(i): Seismic 
loading in the +x-direction. (j)-(l): Combined vertical loading and seismic loading in two 
perpendicular directions. 

 
In the case of the barrel vault, we focus our attention on the combined ac- 

tion of vertical loading, seismic loading in the +x direction (Figs. 6a-c), and 
seismic loading in two orthogonal directions (Figs. 6d-f), neglecting simple 
vertical loading. The above loading conditions induce a three-dimensional 
state of stress in the barrel vault, while pure vertical loading allows for dis- 
cretizing the structure in a series of independent parallel arches (refer, e.g., to 
[41], Sect. 4.1). The background structure of the current vault is composed 
of 231 nodes and 1660 connections (Fig. 6). The resisting mechanism of the 
barrel vault under seismic loading includes transverse compressed arches, lon- 
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gitudinal FRP/FRCM strips with 0.17 mm thickness,  and diagonal  struts, 
as shown in Figs. 6d-f. The FRP/FRCM reinforcements feature rather small 
width in the present case (minimum width: 0.1 mm; maximum width: 4 
mm), and have been magnified by a factor 10 in Fig.  6 for visual   clarity. 

 
 

 

Figure 6: Top, side and 3D views of the optimal reinforcement patterns of a barrel 
vault with FRP/FRCM strips of thickness 0.17 mm (marked in red). The widths of the 
FRP/FRCM reinforcements are magnified by a factor 10 for visual clarity. (a)-(c): Seismic 
loading in the +x-direction. (d)-(f): Combined vertical loading and seismic loading in two 
perpendicular directions. 

 
 

5. Concluding remarks 

We have presented a minimal mass approach to the search for internal 
resisting mechanisms of masonry domes and vaults composed of    compressed 
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masonry struts and tensile FRP/FRCM reinforcements. Such mechanisms 
can be regarded as tensegrity models of the examined structures, in line with 
available technical standard for the FRP reinforcement of masonry struc- 
tures [39]. The existence of internal resisting mechanisms for given yielding 
constraints ensures that the reinforced structure is safe under the examined 
loading conditions, according to the safe theorem of the limit analysis of 
elastic-plastic bodies [40]. Several numerical examples have highlighted the 
potential of the proposed approach in designing non-invasive FRP/FRCM 
reinforcements of masonry vaults and domes, which may ensure sufficient 
‘cracking-adaptation’ capacity of the reinforced  structure. 

Future directions of the present study will be aimed at formulating tenseg- 
rity models of FRP/FRCM reinforced planar masonry structures (e.g., ma- 
sonry walls), and three-dimensional assemblies of domes, vaults and support- 
ing structures (including walls, piers, flying buttresses; drums; etc.). Addi- 
tional extension of the present research will deal with discrete-to-continuum 
approaches to tensegrity membranes [6], and 3D tensegrity networks. 
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